ConcurrentLinkedQueue
简介
ConcurrentLinkedQueue
只实现了Queue
接口,并没有实现BlockingQueue
接口,所以它不是阻塞队列,也不能用于线程池中,但是它是线程安全的,可用于多线程环境中。
那么,它的线程安全又是如何实现的呢?让我们一起来瞧一瞧。
源码分析
属性
java
// 链表头节点
private transient volatile Node<E> head;
// 链表尾节点
private transient volatile Node<E> tail;
就这两个主要属性,一个头节点,一个尾节点。
内部类
java
private static class Node<E> {
volatile E item;
volatile Node<E> next;
}
典型的单链表结构。
构造方法
java
public ConcurrentLinkedQueue() {
// 初始化头尾节点
head = tail = new Node<E>(null);
}
public ConcurrentLinkedQueue(Collection<? extends E> c) {
Node<E> h = null, t = null;
// 遍历c,并把它元素全部添加到单链表中
for (E e : c) {
checkNotNull(e);
Node<E> newNode = new Node<E>(e);
if (h == null)
h = t = newNode;
else {
t.lazySetNext(newNode);
t = newNode;
}
}
if (h == null)
h = t = new Node<E>(null);
head = h;
tail = t;
}
这两个构造方法也很简单,可以看到这是一个无界的单链表实现的队列。
入队
因为它不是阻塞队列,所以只有两个入队的方法,add(e)
和offer(e)
。
因为是无界队列,所以add(e)
方法也不用抛出异常了
java
public boolean add(E e) {
return offer(e);
}
public boolean offer(E e) {
// 不能添加空元素
checkNotNull(e);
// 新节点
final Node<E> newNode = new Node<E>(e);
// 入队到链表尾
for (Node<E> t = tail, p = t;;) {
Node<E> q = p.next;
// 如果没有next,说明到链表尾部了,就入队
if (q == null) {
// CAS更新p的next为新节点
// 如果成功了,就返回true
// 如果不成功就重新取next重新尝试
if (p.casNext(null, newNode)) {
// 如果p不等于t,说明有其它线程先一步更新tail
// 也就不会走到q==null这个分支了
// p取到的可能是t后面的值
// 把tail原子更新为新节点
if (p != t) // hop two nodes at a time
casTail(t, newNode); // Failure is OK.
// 返回入队成功
return true;
}
}
else if (p == q)
// 如果p的next等于p,说明p已经被删除了(已经出队了)
// 重新设置p的值
p = (t != (t = tail)) ? t : head;
else
// t后面还有值,重新设置p的值
p = (p != t && t != (t = tail)) ? t : q;
}
}
入队整个流程还是比较清晰的,这里有个前提是出队时会把出队的那个节点的next
设置为节点本身。
- 定位到链表尾部,尝试把新节点放到后面;
- 如果尾部变化了,则重新获取尾部,再重试;
出队
因为它不是阻塞队列,所以只有两个出队的方法,remove()和poll()。
java
public E remove() {
E x = poll();
if (x != null)
return x;
else
throw new NoSuchElementException();
}
public E poll() {
restartFromHead:
for (;;) {
// 尝试弹出链表的头节点
for (Node<E> h = head, p = h, q;;) {
E item = p.item;
// 如果节点的值不为空,并且将其更新为null成功了
if (item != null && p.casItem(item, null)) {
// 如果头节点变了,则不会走到这个分支
// 会先走下面的分支拿到新的头节点
// 这时候p就不等于h了,就更新头节点
// 在updateHead()中会把head更新为新节点
// 并让head的next指向其自己
if (p != h) // hop two nodes at a time
updateHead(h, ((q = p.next) != null) ? q : p);
// 上面的casItem()成功,就可以返回出队的元素了
return item;
}
// 下面三个分支说明头节点变了
// 且p的item肯定为null
else if ((q = p.next) == null) {
// 如果p的next为空,说明队列中没有元素了
// 更新h为p,也就是空元素的节点
updateHead(h, p);
// 返回null
return null;
}
else if (p == q)
// 如果p等于p的next,说明p已经出队了,重试
continue restartFromHead;
else
// 将p设置为p的next
p = q;
}
}
}
// 更新头节点的方法
final void updateHead(Node<E> h, Node<E> p) {
// 原子更新h为p成功后,延迟更新h的next为它自己
// 这里用延迟更新是安全的,因为head节点已经变了
// 只要入队出队的时候检查head有没有变化就行了,跟它的next关系不大
if (h != p && casHead(h, p))
h.lazySetNext(h);
}
出队的整个逻辑也是比较清晰的:
- 定位到头节点,尝试更新其值为
null
; - 如果成功了,就成功出队;
- 如果失败或者头节点变化了,就重新寻找头节点,并重试;
- 整个出队过程没有一点阻塞相关的代码,所以出队的时候不会阻塞线程,没找到元素就返回
null
;
总结
ConcurrentLinkedQueue
不是阻塞队列;ConcurrentLinkedQueue
不能用在线程池中;ConcurrentLinkedQueue
使用(CAS
+自旋)更新头尾节点控制出队入队操作;
拓展
ConcurrentLinkedQueue与LinkedBlockingQueue对比?
- 两者都是线程安全的队列;
- 两者都可以实现取元素时队列为空直接返回
null
,后者的poll()
方法可以实现此功能; - 前者全程无锁,后者全部都是使用重入锁控制的;
- 前者效率较高,后者效率较低;
- 前者无法实现如果队列为空等待元素到来的操作;
- 前者是非阻塞队列,后者是阻塞队列;
- 前者无法用在线程池中,后者可以;