线程池原理
状态信息
ThreadPoolExecutor 使用 int 的高 3 位来表示线程池状态,低 29 位表示线程数量。这些信息存储在一个原子变量 ctl 中,目的是将线程池状态与线程个数合二为一,这样就可以用一次 CAS 原子操作进行赋值
状态表示
// 高3位:表示当前线程池运行状态,除去高3位之后的低位:表示当前线程池中所拥有的线程数量
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
// 表示在 ctl 中,低 COUNT_BITS 位,是用于存放当前线程数量的位
private static final int COUNT_BITS = Integer.SIZE - 3;
// 低 COUNT_BITS 位所能表达的最大数值,000 11111111111111111111 => 5亿多
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
四种状态
// 111 000000000000000000,转换成整数后其实就是一个【负数】
private static final int RUNNING = -1 << COUNT_BITS;
// 000 000000000000000000
private static final int SHUTDOWN = 0 << COUNT_BITS;
// 001 000000000000000000
private static final int STOP = 1 << COUNT_BITS;
// 010 000000000000000000
private static final int TIDYING = 2 << COUNT_BITS;
// 011 000000000000000000
private static final int TERMINATED = 3 << COUNT_BITS;
状态 | 高3位 | 接收新任务 | 处理阻塞任务队列 | 说明 |
---|---|---|---|---|
RUNNING | 111 | Y | Y | |
SHUTDOWN | 000 | N | Y | 不接收新任务,但处理阻塞队列剩余任务 |
STOP | 001 | N | N | 中断正在执行的任务,并抛弃阻塞队列任务 |
TIDYING | 010 | - | - | 任务全执行完毕,活动线程为 0 即将进入终结 |
TERMINATED | 011 | - | - | 终止状态 |
获取当前线程池运行状态:
java// ~CAPACITY = ~000 11111111111111111111 = 111 000000000000000000000(取反) // c == ctl = 111 000000000000000000111 // 111 000000000000000000111 // 111 000000000000000000000 // 111 000000000000000000000 获取到了运行状态 private static int runStateOf(int c) { return c & ~CAPACITY; }
获取当前线程池线程数量:
java// c = 111 000000000000000000111 // CAPACITY = 000 111111111111111111111 // 000 000000000000000000111 => 7 private static int workerCountOf(int c) { return c & CAPACITY; }
重置当前线程池状态 ctl:
java// rs 表示线程池状态,wc 表示当前线程池中 worker(线程)数量,相与以后就是合并后的状态 private static int ctlOf(int rs, int wc) { return rs | wc; }
比较当前线程池 ctl 所表示的状态:
java// 比较当前线程池 ctl 所表示的状态,是否小于某个状态 s // 状态对比:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATED private static boolean runStateLessThan(int c, int s) { return c < s; } // 比较当前线程池 ctl 所表示的状态,是否大于等于某个状态s private static boolean runStateAtLeast(int c, int s) { return c >= s; } // 小于 SHUTDOWN 的一定是 RUNNING,SHUTDOWN == 0 private static boolean isRunning(int c) { return c < SHUTDOWN; }
设置线程池 ctl:
java// 使用 CAS 方式 让 ctl 值 +1 ,成功返回 true, 失败返回 false private boolean compareAndIncrementWorkerCount(int expect) { return ctl.compareAndSet(expect, expect + 1); } // 使用 CAS 方式 让 ctl 值 -1 ,成功返回 true, 失败返回 false private boolean compareAndDecrementWorkerCount(int expect) { return ctl.compareAndSet(expect, expect - 1); } // 将 ctl 值减一,do while 循环会一直重试,直到成功为止 private void decrementWorkerCount() { do {} while (!compareAndDecrementWorkerCount(ctl.get())); }
成员属性
成员变量
线程池中存放 Worker 的容器:线程池没有初始化,直接往池中加线程即可
javaprivate final HashSet<Worker> workers = new HashSet<Worker>();
线程全局锁:
java// 增加减少 worker 或者时修改线程池运行状态需要持有 mainLock private final ReentrantLock mainLock = new ReentrantLock();
可重入锁的条件变量:
java// 当外部线程调用 awaitTermination() 方法时,会等待当前线程池状态为 Termination 为止 private final Condition termination = mainLock.newCondition()
线程池相关参数:
java// 核心线程数量 private volatile int corePoolSize; // 线程池最大线程数量 private volatile int maximumPoolSize; // 空闲线程存活时间 private volatile long keepAliveTime; // 创建线程时使用的线程工厂,默认是 DefaultThreadFactory private volatile ThreadFactory threadFactory; // 【超过核心线程提交任务就放入 阻塞队列】 private final BlockingQueue<Runnable> workQueue; // 拒绝策略,juc包提供了4中方式 private volatile RejectedExecutionHandler handler; // 默认策略 private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();
记录线程池相关属性的数值:
java// 记录线程池生命周期内线程数最大值 private int largestPoolSize; // 记录线程池所完成任务总数,当某个 worker 退出时将完成的任务累加到该属性 private long completedTaskCount;
控制核心线程数量内的线程是否可以被回收:
java// false(默认)代表不可以,为 true 时核心线程空闲超过 keepAliveTime 也会被回收 // allowCoreThreadTimeOut(boolean value) 方法可以设置该值 private volatile boolean allowCoreThreadTimeOut;
内部类
Worker 类:每个 Worker 对象会绑定一个初始任务,启动 Worker 时优先执行,这也是造成线程池不公平的原因。Worker 继承自 AQS,本身具有锁的特性,采用独占锁模式,state = 0 表示未被占用,> 0 表示被占用,< 0 表示初始状态不能被抢锁
javaprivate final class Worker extends AbstractQueuedSynchronizer implements Runnable { // worker 内部封装的工作线程 final Thread thread; // worker 第一个执行的任务,普通的 Runnable 实现类或者是 FutureTask Runnable firstTask; // 记录当前 worker 所完成任务数量 volatile long completedTasks; // 构造方法 Worker(Runnable firstTask) { // 设置AQS独占模式为初始化中状态,这个状态不能被抢占锁 setState(-1); // firstTask不为空时,当worker启动后,内部线程会优先执行firstTask,执行完后会到queue中去获取下个任务 this.firstTask = firstTask; // 使用线程工厂创建一个线程,并且【将当前worker指定为Runnable】,所以thread启动时会调用 worker.run() this.thread = getThreadFactory().newThread(this); } // 【不可重入锁】 protected boolean tryAcquire(int unused) { if (compareAndSetState(0, 1)) { setExclusiveOwnerThread(Thread.currentThread()); return true; } return false; } }
javapublic Thread newThread(Runnable r) { // 将当前 worker 指定为 thread 的执行方法,线程调用 start 会调用 r.run() Thread t = new Thread(group, r, namePrefix + threadNumber.getAndIncrement(), 0); if (t.isDaemon()) t.setDaemon(false); if (t.getPriority() != Thread.NORM_PRIORITY) t.setPriority(Thread.NORM_PRIORITY); return t; }
成员方法
提交方法
AbstractExecutorService#submit():提交任务,把 Runnable 或 Callable 任务封装成 FutureTask 执行,可以通过方法返回的任务对象,调用 get 阻塞获取任务执行的结果或者异常,源码分析在笔记的 Future 部分
javapublic Future<?> submit(Runnable task) { // 空指针异常 if (task == null) throw new NullPointerException(); // 把 Runnable 封装成未来任务对象,执行结果就是 null,也可以通过参数指定 FutureTask#get 返回数据 RunnableFuture<Void> ftask = newTaskFor(task, null); // 执行方法 execute(ftask); return ftask; } public <T> Future<T> submit(Callable<T> task) { if (task == null) throw new NullPointerException(); // 把 Callable 封装成未来任务对象 RunnableFuture<T> ftask = newTaskFor(task); // 执行方法 execute(ftask); // 返回未来任务对象,用来获取返回值 return ftask; }
javaprotected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) { // Runnable 封装成 FutureTask,【指定返回值】 return new FutureTask<T>(runnable, value); } protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) { // Callable 直接封装成 FutureTask return new FutureTask<T>(callable); }
execute():执行任务,但是没有返回值,没办法获取任务执行结果,出现异常会直接抛出任务执行时的异常。根据线程池中的线程数,选择添加任务时的处理方式
java// command 可以是普通的 Runnable 实现类,也可以是 FutureTask,不能是 Callable public void execute(Runnable command) { // 非空判断 if (command == null) throw new NullPointerException(); // 获取 ctl 最新值赋值给 c,ctl 高 3 位表示线程池状态,低位表示当前线程池线程数量。 int c = ctl.get(); // 【1】当前线程数量小于核心线程数,此次提交任务直接创建一个新的 worker,线程池中多了一个新的线程 if (workerCountOf(c) < corePoolSize) { // addWorker 为创建线程的过程,会创建 worker 对象并且将 command 作为 firstTask,优先执行 if (addWorker(command, true)) return; // 执行到这条语句,说明 addWorker 一定是失败的,存在并发现象或者线程池状态被改变,重新获取状态 // SHUTDOWN 状态下也有可能创建成功,前提 firstTask == null 而且当前 queue 不为空(特殊情况) c = ctl.get(); } // 【2】执行到这说明当前线程数量已经达到核心线程数量 或者 addWorker 失败 // 判断当前线程池是否处于running状态,成立就尝试将 task 放入到 workQueue 中 if (isRunning(c) && workQueue.offer(command)) { int recheck = ctl.get(); // 条件一成立说明线程池状态被外部线程给修改了,可能是执行了 shutdown() 方法,该状态不能接收新提交的任务 // 所以要把刚提交的任务删除,删除成功说明提交之后线程池中的线程还未消费(处理)该任务 if (!isRunning(recheck) && remove(command)) // 任务出队成功,走拒绝策略 reject(command); // 执行到这说明线程池是 running 状态,获取线程池中的线程数量,判断是否是 0 // 【担保机制】,保证线程池在 running 状态下,最起码得有一个线程在工作 else if (workerCountOf(recheck) == 0) addWorker(null, false); } // 【3】offer失败说明queue满了 // 如果线程数量尚未达到 maximumPoolSize,会创建非核心 worker 线程直接执行 command,【这也是不公平的原因】 // 如果当前线程数量达到 maximumPoolSiz,这里 addWorker 也会失败,走拒绝策略 else if (!addWorker(command, false)) reject(command); }
添加线程
prestartAllCoreThreads():提前预热,创建所有的核心线程
javapublic int prestartAllCoreThreads() { int n = 0; while (addWorker(null, true)) ++n; return n; }
addWorker():添加线程到线程池,返回 true 表示创建 Worker 成功,且线程启动。首先判断线程池是否允许添加线程,允许就让线程数量 + 1,然后去创建 Worker 加入线程池
注意:SHUTDOWN 状态也能添加线程,但是要求新加的 Woker 没有 firstTask,而且当前 queue 不为空,所以创建一个线程来帮助线程池执行队列中的任务
java// core == true 表示采用核心线程数量限制,false 表示采用 maximumPoolSize private boolean addWorker(Runnable firstTask, boolean core) { // 自旋【判断当前线程池状态是否允许创建线程】,允许就设置线程数量 + 1 retry: for (;;) { // 获取 ctl 的值 int c = ctl.get(); // 获取当前线程池运行状态 int rs = runStateOf(c); // 判断当前线程池状态【是否允许添加线程】 // 当前线程池是 SHUTDOWN 状态,但是队列里面还有任务尚未处理完,需要处理完 queue 中的任务 // 【不允许再提交新的 task,所以 firstTask 为空,但是可以继续添加 worker】 if (rs >= SHUTDOWN && !(rs == SHUTDOWN && firstTask == null && !workQueue.isEmpty())) return false; for (;;) { // 获取线程池中线程数量 int wc = workerCountOf(c); // 条件一一般不成立,CAPACITY是5亿多,根据 core 判断使用哪个大小限制线程数量,超过了返回 false if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize)) return false; // 记录线程数量已经加 1,类比于申请到了一块令牌,条件失败说明其他线程修改了数量 if (compareAndIncrementWorkerCount(c)) // 申请成功,跳出了 retry 这个 for 自旋 break retry; // CAS 失败,没有成功的申请到令牌 c = ctl.get(); // 判断当前线程池状态是否发生过变化,被其他线程修改了,可能其他线程调用了 shutdown() 方法 if (runStateOf(c) != rs) // 返回外层循环检查是否能创建线程,在 if 语句中返回 false continue retry; } } //【令牌申请成功,开始创建线程】 // 运行标记,表示创建的 worker 是否已经启动,false未启动 true启动 boolean workerStarted = false; // 添加标记,表示创建的 worker 是否添加到池子中了,默认false未添加,true是添加。 boolean workerAdded = false; Worker w = null; try { // 【创建 Worker,底层通过线程工厂 newThread 方法创建执行线程,指定了首先执行的任务】 w = new Worker(firstTask); // 将新创建的 worker 节点中的线程赋值给 t final Thread t = w.thread; // 这里的判断为了防止 程序员自定义的 ThreadFactory 实现类有 bug,创造不出线程 if (t != null) { final ReentrantLock mainLock = this.mainLock; // 加互斥锁,要添加 worker 了 mainLock.lock(); try { // 获取最新线程池运行状态保存到 rs int rs = runStateOf(ctl.get()); // 判断线程池是否为RUNNING状态,不是再【判断当前是否为SHUTDOWN状态且firstTask为空,特殊情况】 if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) { // 当线程start后,线程isAlive会返回true,这里还没开始启动线程,如果被启动了就需要报错 if (t.isAlive()) throw new IllegalThreadStateException(); //【将新建的 Worker 添加到线程池中】 workers.add(w); int s = workers.size(); // 当前池中的线程数量是一个新高,更新 largestPoolSize if (s > largestPoolSize) largestPoolSize = s; // 添加标记置为 true workerAdded = true; } } finally { // 解锁啊 mainLock.unlock(); } // 添加成功就【启动线程执行任务】 if (workerAdded) { // Thread 类中持有 Runnable 任务对象,调用的是 Runnable 的 run ,也就是 FutureTask t.start(); // 运行标记置为 true workerStarted = true; } } } finally { // 如果启动线程失败,做清理工作 if (! workerStarted) addWorkerFailed(w); } // 返回新创建的线程是否启动 return workerStarted; }
addWorkerFailed():清理任务
javaprivate void addWorkerFailed(Worker w) { final ReentrantLock mainLock = this.mainLock; // 持有线程池全局锁,因为操作的是线程池相关的东西 mainLock.lock(); try { //条件成立需要将 worker 在 workers 中清理出去。 if (w != null) workers.remove(w); // 将线程池计数 -1,相当于归还令牌。 decrementWorkerCount(); // 尝试停止线程池 tryTerminate(); } finally { //释放线程池全局锁。 mainLock.unlock(); } }
运行方法
Worker#run:Worker 实现了 Runnable 接口,当线程启动时,会调用 Worker 的 run() 方法
javapublic void run() { // ThreadPoolExecutor#runWorker() runWorker(this); }
runWorker():线程启动就要执行任务,会一直 while 循环获取任务并执行
javafinal void runWorker(Worker w) { Thread wt = Thread.currentThread(); // 获取 worker 的 firstTask Runnable task = w.firstTask; // 引用置空,【防止复用该线程时重复执行该任务】 w.firstTask = null; // 初始化 worker 时设置 state = -1,表示不允许抢占锁 // 这里需要设置 state = 0 和 exclusiveOwnerThread = null,开始独占模式抢锁 w.unlock(); // true 表示发生异常退出,false 表示正常退出。 boolean completedAbruptly = true; try { // firstTask 不是 null 就直接运行,否则去 queue 中获取任务 // 【getTask 如果是阻塞获取任务,会一直阻塞在take方法,直到获取任务,不会走返回null的逻辑】 while (task != null || (task = getTask()) != null) { // worker 加锁,shutdown 时会判断当前 worker 状态,【根据独占锁状态判断是否空闲】 w.lock(); // 说明线程池状态大于 STOP,目前处于 STOP/TIDYING/TERMINATION,此时给线程一个中断信号 if ((runStateAtLeast(ctl.get(), STOP) || // 说明线程处于 RUNNING 或者 SHUTDOWN 状态,清除打断标记 (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted()) // 中断线程,设置线程的中断标志位为 true wt.interrupt(); try { // 钩子方法,【任务执行的前置处理】 beforeExecute(wt, task); Throwable thrown = null; try { // 【执行任务】 task.run(); } catch (Exception x) { //..... } finally { // 钩子方法,【任务执行的后置处理】 afterExecute(task, thrown); } } finally { task = null; // 将局部变量task置为null,代表任务执行完成 w.completedTasks++; // 更新worker完成任务数量 w.unlock(); // 解锁 } } // getTask()方法返回null时会走到这里,表示queue为空并且线程空闲超过保活时间,【当前线程执行退出逻辑】 completedAbruptly = false; } finally { // 正常退出 completedAbruptly = false // 异常退出 completedAbruptly = true,【从 task.run() 内部抛出异常】时,跳到这一行 processWorkerExit(w, completedAbruptly); } }
unlock():重置锁
javapublic void unlock() { release(1); } // 外部不会直接调用这个方法 这个方法是 AQS 内调用的,外部调用 unlock 时触发此方法 protected boolean tryRelease(int unused) { setExclusiveOwnerThread(null); // 设置持有者为 null setState(0); // 设置 state = 0 return true; }
getTask():获取任务,线程空闲时间超过 keepAliveTime 就会被回收,判断的依据是当前线程阻塞获取任务超过保活时间,方法返回 null 就代表当前线程要被回收了,返回到 runWorker 执行线程退出逻辑。线程池具有担保机制,对于 RUNNING 状态下的超时回收,要保证线程池中最少有一个线程运行,或者任务阻塞队列已经是空
javaprivate Runnable getTask() { // 超时标记,表示当前线程获取任务是否超时,true 表示已超时 boolean timedOut = false; for (;;) { int c = ctl.get(); // 获取线程池当前运行状态 int rs = runStateOf(c); // 【tryTerminate】打断线程后执行到这,此时线程池状态为STOP或者线程池状态为SHUTDOWN并且队列已经是空 // 所以下面的 if 条件一定是成立的,可以直接返回 null,线程就应该退出了 if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { // 使用 CAS 自旋的方式让 ctl 值 -1 decrementWorkerCount(); return null; } // 获取线程池中的线程数量 int wc = workerCountOf(c); // 线程没有明确的区分谁是核心或者非核心线程,是根据当前池中的线程数量判断 // timed = false 表示当前这个线程 获取task时不支持超时机制的,当前线程会使用 queue.take() 阻塞获取 // timed = true 表示当前这个线程 获取task时支持超时机制,使用 queue.poll(xxx,xxx) 超时获取 // 条件一代表允许回收核心线程,那就无所谓了,全部线程都执行超时回收 // 条件二成立说明线程数量大于核心线程数,当前线程认为是非核心线程,有保活时间,去超时获取任务 boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; // 如果线程数量是否超过最大线程数,直接回收 // 如果当前线程【允许超时回收并且已经超时了】,就应该被回收了,由于【担保机制】还要做判断: // wc > 1 说明线程池还用其他线程,当前线程可以直接回收 // workQueue.isEmpty() 前置条件是 wc = 1,【如果当前任务队列也是空了,最后一个线程就可以退出】 if ((wc > maximumPoolSize || (timed && timedOut)) && (wc > 1 || workQueue.isEmpty())) { // 使用 CAS 机制将 ctl 值 -1 ,减 1 成功的线程,返回 null,代表可以退出 if (compareAndDecrementWorkerCount(c)) return null; continue; } try { // 根据当前线程是否需要超时回收,【选择从队列获取任务的方法】是超时获取或者阻塞获取 Runnable r = timed ? workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take(); // 获取到任务返回任务,【阻塞获取会阻塞到获取任务为止】,不会返回 null if (r != null) return r; // 获取任务为 null 说明超时了,将超时标记设置为 true,下次自旋时返 null timedOut = true; } catch (InterruptedException retry) { // 阻塞线程被打断后超时标记置为 false,【说明被打断不算超时】,要继续获取,直到超时或者获取到任务 // 如果线程池 SHUTDOWN 状态下的打断,会在循环获取任务前判断,返回 null timedOut = false; } } }
processWorkerExit():线程退出线程池,也有担保机制,保证队列中的任务被执行
java// 正常退出 completedAbruptly = false,异常退出为 true private void processWorkerExit(Worker w, boolean completedAbruptly) { // 条件成立代表当前 worker 是发生异常退出的,task 任务执行过程中向上抛出异常了 if (completedAbruptly) // 从异常时到这里 ctl 一直没有 -1,需要在这里 -1 decrementWorkerCount(); final ReentrantLock mainLock = this.mainLock; // 加锁 mainLock.lock(); try { // 将当前 worker 完成的 task 数量,汇总到线程池的 completedTaskCount completedTaskCount += w.completedTasks; // 将 worker 从线程池中移除 workers.remove(w); } finally { // 解锁 mainLock.unlock(); } // 尝试停止线程池,唤醒下一个线程 tryTerminate(); int c = ctl.get(); // 线程池不是停止状态就应该有线程运行【担保机制】 if (runStateLessThan(c, STOP)) { // 正常退出的逻辑,是对空闲线程回收,不是执行出错 if (!completedAbruptly) { // 根据是否回收核心线程确定【线程池中的线程数量最小值】 int min = allowCoreThreadTimeOut ? 0 : corePoolSize; // 最小值为 0,但是线程队列不为空,需要一个线程来完成任务担保机制 if (min == 0 && !workQueue.isEmpty()) min = 1; // 线程池中的线程数量大于最小值可以直接返回 if (workerCountOf(c) >= min) return; } // 执行 task 时发生异常,有个线程因为异常终止了,需要添加 // 或者线程池中的数量小于最小值,这里要创建一个新 worker 加进线程池 addWorker(null, false); } }
停止方法
shutdown():停止线程池
javapublic void shutdown() { final ReentrantLock mainLock = this.mainLock; // 获取线程池全局锁 mainLock.lock(); try { checkShutdownAccess(); // 设置线程池状态为 SHUTDOWN,如果线程池状态大于 SHUTDOWN,就不会设置直接返回 advanceRunState(SHUTDOWN); // 中断空闲线程 interruptIdleWorkers(); // 空方法,子类可以扩展 onShutdown(); } finally { // 释放线程池全局锁 mainLock.unlock(); } tryTerminate(); }
interruptIdleWorkers():shutdown 方法会中断所有空闲线程,根据是否可以获取 AQS 独占锁判断是否处于工作状态。线程之所以空闲是因为阻塞队列没有任务,不会中断正在运行的线程,所以 shutdown 方法会让所有的任务执行完毕
java// onlyOne == true 说明只中断一个线程 ,false 则中断所有线程 private void interruptIdleWorkers(boolean onlyOne) { final ReentrantLock mainLock = this.mainLock; / /持有全局锁 mainLock.lock(); try { // 遍历所有 worker for (Worker w : workers) { // 获取当前 worker 的线程 Thread t = w.thread; // 条件一成立:说明当前迭代的这个线程尚未中断 // 条件二成立:说明【当前worker处于空闲状态】,阻塞在poll或者take,因为worker执行task时是要加锁的 // 每个worker有一个独占锁,w.tryLock()尝试加锁,加锁成功返回 true if (!t.isInterrupted() && w.tryLock()) { try { // 中断线程,处于 queue 阻塞的线程会被唤醒,进入下一次自旋,返回 null,执行退出相逻辑 t.interrupt(); } catch (SecurityException ignore) { } finally { // 释放worker的独占锁 w.unlock(); } } // false,代表中断所有的线程 if (onlyOne) break; } } finally { // 释放全局锁 mainLock.unlock(); } }
shutdownNow():直接关闭线程池,不会等待任务执行完成
javapublic List<Runnable> shutdownNow() { // 返回值引用 List<Runnable> tasks; final ReentrantLock mainLock = this.mainLock; // 获取线程池全局锁 mainLock.lock(); try { checkShutdownAccess(); // 设置线程池状态为STOP advanceRunState(STOP); // 中断线程池中【所有线程】 interruptWorkers(); // 从阻塞队列中导出未处理的task tasks = drainQueue(); } finally { mainLock.unlock(); } tryTerminate(); // 返回当前任务队列中 未处理的任务。 return tasks; }
tryTerminate():设置为 TERMINATED 状态 if either (SHUTDOWN and pool and queue empty) or (STOP and pool empty)
javafinal void tryTerminate() { for (;;) { // 获取 ctl 的值 int c = ctl.get(); // 线程池正常,或者有其他线程执行了状态转换的方法,当前线程直接返回 if (isRunning(c) || runStateAtLeast(c, TIDYING) || // 线程池是 SHUTDOWN 并且任务队列不是空,需要去处理队列中的任务 (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty())) return; // 执行到这里说明线程池状态为 STOP 或者线程池状态为 SHUTDOWN 并且队列已经是空 // 判断线程池中线程的数量 if (workerCountOf(c) != 0) { // 【中断一个空闲线程】,在 queue.take() | queue.poll() 阻塞空闲 // 唤醒后的线程会在getTask()方法返回null, // 执行 processWorkerExit 退出逻辑时会再次调用 tryTerminate() 唤醒下一个空闲线程 interruptIdleWorkers(ONLY_ONE); return; } // 池中的线程数量为 0 来到这里 final ReentrantLock mainLock = this.mainLock; // 加全局锁 mainLock.lock(); try { // 设置线程池状态为 TIDYING 状态,线程数量为 0 if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) { try { // 结束线程池 terminated(); } finally { // 设置线程池状态为TERMINATED状态。 ctl.set(ctlOf(TERMINATED, 0)); // 【唤醒所有调用 awaitTermination() 方法的线程】 termination.signalAll(); } return; } } finally { // 释放线程池全局锁 mainLock.unlock(); } } }
Future
线程使用
FutureTask 未来任务对象,继承 Runnable、Future 接口,用于包装 Callable 对象,实现任务的提交
public static void main(String[] args) throws ExecutionException, InterruptedException {
FutureTask<String> task = new FutureTask<>(new Callable<String>() {
@Override
public String call() throws Exception {
return "Hello World";
}
});
new Thread(task).start(); //启动线程
String msg = task.get(); //获取返回任务数据
System.out.println(msg);
}
构造方法:
public FutureTask(Callable<V> callable){
this.callable = callable; // 属性注入
this.state = NEW; // 任务状态设置为 new
}
public FutureTask(Runnable runnable, V result) {
// 适配器模式
this.callable = Executors.callable(runnable, result);
this.state = NEW;
}
public static <T> Callable<T> callable(Runnable task, T result) {
if (task == null) throw new NullPointerException();
// 使用装饰者模式将 runnable 转换成 callable 接口,外部线程通过 get 获取
// 当前任务执行结果时,结果可能为 null 也可能为传进来的值,【传进来什么返回什么】
return new RunnableAdapter<T>(task, result);
}
static final class RunnableAdapter<T> implements Callable<T> {
final Runnable task;
final T result;
// 构造方法
RunnableAdapter(Runnable task, T result) {
this.task = task;
this.result = result;
}
public T call() {
// 实则调用 Runnable#run 方法
task.run();
// 返回值为构造 FutureTask 对象时传入的返回值或者是 null
return result;
}
}
成员属性
FutureTask 类的成员属性:
任务状态:
java// 表示当前task状态 private volatile int state; // 当前任务尚未执行 private static final int NEW = 0; // 当前任务正在结束,尚未完全结束,一种临界状态 private static final int COMPLETING = 1; // 当前任务正常结束 private static final int NORMAL = 2; // 当前任务执行过程中发生了异常,内部封装的 callable.run() 向上抛出异常了 private static final int EXCEPTIONAL = 3; // 当前任务被取消 private static final int CANCELLED = 4; // 当前任务中断中 private static final int INTERRUPTING = 5; // 当前任务已中断 private static final int INTERRUPTED = 6;
任务对象:
javaprivate Callable<V> callable; // Runnable 使用装饰者模式伪装成 Callable
存储任务执行的结果,这是 run 方法返回值是 void 也可以获取到执行结果的原因:
java// 正常情况下:任务正常执行结束,outcome 保存执行结果,callable 返回值 // 非正常情况:callable 向上抛出异常,outcome 保存异常 private Object outcome;
执行当前任务的线程对象:
javaprivate volatile Thread runner; // 当前任务被线程执行期间,保存当前执行任务的线程对象引用
线程阻塞队列的头节点:
java// 会有很多线程去 get 当前任务的结果,这里使用了一种数据结构头插头取(类似栈)的一个队列来保存所有的 get 线程 private volatile WaitNode waiters;
内部类:
javastatic final class WaitNode { // 单向链表 volatile Thread thread; volatile WaitNode next; WaitNode() { thread = Thread.currentThread(); } }
成员方法
FutureTask 类的成员方法:
FutureTask#run:任务执行入口
javapublic void run() { //条件一:成立说明当前 task 已经被执行过了或者被 cancel 了,非 NEW 状态的任务,线程就不需要处理了 //条件二:线程是 NEW 状态,尝试设置当前任务对象的线程是当前线程,设置失败说明其他线程抢占了该任务,直接返回 if (state != NEW || !UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread())) return; try { // 执行到这里,当前 task 一定是 NEW 状态,而且【当前线程也抢占 task 成功】 Callable<V> c = callable; // 判断任务是否为空,防止空指针异常;判断 state 状态,防止外部线程在此期间 cancel 掉当前任务 // 【因为 task 的执行者已经设置为当前线程,所以这里是线程安全的】 if (c != null && state == NEW) { V result; // true 表示 callable.run 代码块执行成功 未抛出异常 // false 表示 callable.run 代码块执行失败 抛出异常 boolean ran; try { // 【调用自定义的方法,执行结果赋值给 result】 result = c.call(); // 没有出现异常 ran = true; } catch (Throwable ex) { // 出现异常,返回值置空,ran 置为 false result = null; ran = false; // 设置返回的异常 setException(ex); } // 代码块执行正常 if (ran) // 设置返回的结果 set(result); } } finally { // 任务执行完成,取消线程的引用,help GC runner = null; int s = state; // 判断任务是不是被中断 if (s >= INTERRUPTING) // 执行中断处理方法 handlePossibleCancellationInterrupt(s); } }
FutureTask#set:设置正常返回值,首先将任务状态设置为 COMPLETING 状态代表完成中,逻辑执行完设置为 NORMAL 状态代表任务正常执行完成,最后唤醒 get() 阻塞线程
javaprotected void set(V v) { // CAS 方式设置当前任务状态为完成中,设置失败说明其他线程取消了该任务 if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) { // 【将结果赋值给 outcome】 outcome = v; // 将当前任务状态修改为 NORMAL 正常结束状态。 UNSAFE.putOrderedInt(this, stateOffset, NORMAL); finishCompletion(); } }
FutureTask#setException:设置异常返回值
javaprotected void setException(Throwable t) { if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) { // 赋值给返回结果,用来向上层抛出来的异常 outcome = t; // 将当前任务的状态 修改为 EXCEPTIONAL UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); finishCompletion(); } }
FutureTask#finishCompletion:唤醒 get() 阻塞线程
javaprivate void finishCompletion() { // 遍历所有的等待的节点,q 指向头节点 for (WaitNode q; (q = waiters) != null;) { // 使用cas设置 waiters 为 null,防止外部线程使用cancel取消当前任务,触发finishCompletion方法重复执行 if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) { // 自旋 for (;;) { // 获取当前 WaitNode 节点封装的 thread Thread t = q.thread; // 当前线程不为 null,唤醒当前 get() 等待获取数据的线程 if (t != null) { q.thread = null; LockSupport.unpark(t); } // 获取当前节点的下一个节点 WaitNode next = q.next; // 当前节点是最后一个节点了 if (next == null) break; // 断开链表 q.next = null; // help gc q = next; } break; } } done(); callable = null; // help GC }
FutureTask#handlePossibleCancellationInterrupt:任务中断处理
javaprivate void handlePossibleCancellationInterrupt(int s) { if (s == INTERRUPTING) // 中断状态中 while (state == INTERRUPTING) // 等待中断完成 Thread.yield(); }
FutureTask#get:获取任务执行的返回值,执行 run 和 get 的不是同一个线程,一般有多个线程 get,只有一个线程 run
javapublic V get() throws InterruptedException, ExecutionException { // 获取当前任务状态 int s = state; // 条件成立说明任务还没执行完成 if (s <= COMPLETING) // 返回 task 当前状态,可能当前线程在里面已经睡了一会 s = awaitDone(false, 0L); return report(s); }
FutureTask#awaitDone:get 线程封装成 WaitNode 对象进入阻塞队列阻塞等待
javaprivate int awaitDone(boolean timed, long nanos) throws InterruptedException { // 0 不带超时 final long deadline = timed ? System.nanoTime() + nanos : 0L; // 引用当前线程,封装成 WaitNode 对象 WaitNode q = null; // 表示当前线程 waitNode 对象,是否进入阻塞队列 boolean queued = false; // 【三次自旋开始休眠】 for (;;) { // 判断当前 get() 线程是否被打断,打断返回 true,清除打断标记 if (Thread.interrupted()) { // 当前线程对应的等待 node 出队, removeWaiter(q); throw new InterruptedException(); } // 获取任务状态 int s = state; // 条件成立说明当前任务执行完成已经有结果了 if (s > COMPLETING) { // 条件成立说明已经为当前线程创建了 WaitNode,置空 help GC if (q != null) q.thread = null; // 返回当前的状态 return s; } // 条件成立说明当前任务接近完成状态,这里让当前线程释放一下 cpu ,等待进行下一次抢占 cpu else if (s == COMPLETING) Thread.yield(); // 【第一次自旋】,当前线程还未创建 WaitNode 对象,此时为当前线程创建 WaitNode对象 else if (q == null) q = new WaitNode(); // 【第二次自旋】,当前线程已经创建 WaitNode 对象了,但是node对象还未入队 else if (!queued) // waiters 指向队首,让当前 WaitNode 成为新的队首,【头插法】,失败说明其他线程修改了新的队首 queued = UNSAFE.compareAndSwapObject(this, waitersOffset, q.next = waiters, q); // 【第三次自旋】,会到这里,或者 else 内 else if (timed) { nanos = deadline - System.nanoTime(); if (nanos <= 0L) { removeWaiter(q); return state; } // 阻塞指定的时间 LockSupport.parkNanos(this, nanos); } // 条件成立:说明需要阻塞 else // 【当前 get 操作的线程被 park 阻塞】,除非有其它线程将唤醒或者将当前线程中断 LockSupport.park(this); } }
FutureTask#report:封装运行结果,可以获取 run() 方法中设置的成员变量 outcome,这是 run 方法的返回值是 void 也可以获取到任务执行的结果的原因
javaprivate V report(int s) throws ExecutionException { // 获取执行结果,是在一个 futuretask 对象中的属性,可以直接获取 Object x = outcome; // 当前任务状态正常结束 if (s == NORMAL) return (V)x; // 直接返回 callable 的逻辑结果 // 当前任务被取消或者中断 if (s >= CANCELLED) throw new CancellationException(); // 抛出异常 // 执行到这里说明自定义的 callable 中的方法有异常,使用 outcome 上层抛出异常 throw new ExecutionException((Throwable)x); }
FutureTask#cancel:任务取消,打断正在执行该任务的线程
javapublic boolean cancel(boolean mayInterruptIfRunning) { // 条件一:表示当前任务处于运行中或者处于线程池任务队列中 // 条件二:表示修改状态,成功可以去执行下面逻辑,否则返回 false 表示 cancel 失败 if (!(state == NEW && UNSAFE.compareAndSwapInt(this, stateOffset, NEW, mayInterruptIfRunning ? INTERRUPTING : CANCELLED))) return false; try { // 如果任务已经被执行,是否允许打断 if (mayInterruptIfRunning) { try { // 获取执行当前 FutureTask 的线程 Thread t = runner; if (t != null) // 打断执行的线程 t.interrupt(); } finally { // 设置任务状态为【中断完成】 UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED); } } } finally { // 唤醒所有 get() 阻塞的线程 finishCompletion(); } return true; }