Skip to content

线程池原理

状态信息

ThreadPoolExecutor 使用 int 的高 3 位来表示线程池状态,低 29 位表示线程数量。这些信息存储在一个原子变量 ctl 中,目的是将线程池状态与线程个数合二为一,这样就可以用一次 CAS 原子操作进行赋值

状态表示

java
// 高3位:表示当前线程池运行状态,除去高3位之后的低位:表示当前线程池中所拥有的线程数量
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
// 表示在 ctl 中,低 COUNT_BITS 位,是用于存放当前线程数量的位
private static final int COUNT_BITS = Integer.SIZE - 3;
// 低 COUNT_BITS 位所能表达的最大数值,000 11111111111111111111 => 5亿多
private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

An image

四种状态

java
// 111 000000000000000000,转换成整数后其实就是一个【负数】
private static final int RUNNING    = -1 << COUNT_BITS;
// 000 000000000000000000
private static final int SHUTDOWN   =  0 << COUNT_BITS;
// 001 000000000000000000
private static final int STOP       =  1 << COUNT_BITS;
// 010 000000000000000000
private static final int TIDYING    =  2 << COUNT_BITS;
// 011 000000000000000000
private static final int TERMINATED =  3 << COUNT_BITS;
状态高3位接收新任务处理阻塞任务队列说明
RUNNING111YY
SHUTDOWN000NY不接收新任务,但处理阻塞队列剩余任务
STOP001NN中断正在执行的任务,并抛弃阻塞队列任务
TIDYING010--任务全执行完毕,活动线程为 0 即将进入终结
TERMINATED011--终止状态
  • 获取当前线程池运行状态:

    java
    // ~CAPACITY = ~000 11111111111111111111 = 111 000000000000000000000(取反)
    // c == ctl = 111 000000000000000000111
    // 111 000000000000000000111
    // 111 000000000000000000000
    // 111 000000000000000000000	获取到了运行状态
    private static int runStateOf(int c)     { return c & ~CAPACITY; }
  • 获取当前线程池线程数量:

    java
    //        c = 111 000000000000000000111
    // CAPACITY = 000 111111111111111111111
    //            000 000000000000000000111 => 7
    private static int workerCountOf(int c)  { return c & CAPACITY; }
  • 重置当前线程池状态 ctl:

    java
    // rs 表示线程池状态,wc 表示当前线程池中 worker(线程)数量,相与以后就是合并后的状态
    private static int ctlOf(int rs, int wc) { return rs | wc; }
  • 比较当前线程池 ctl 所表示的状态:

    java
    // 比较当前线程池 ctl 所表示的状态,是否小于某个状态 s
    // 状态对比:RUNNING < SHUTDOWN < STOP < TIDYING < TERMINATED
    private static boolean runStateLessThan(int c, int s) { return c < s; }
    // 比较当前线程池 ctl 所表示的状态,是否大于等于某个状态s
    private static boolean runStateAtLeast(int c, int s) { return c >= s; }
    // 小于 SHUTDOWN 的一定是 RUNNING,SHUTDOWN == 0
    private static boolean isRunning(int c) { return c < SHUTDOWN; }
  • 设置线程池 ctl:

    java
    // 使用 CAS 方式 让 ctl 值 +1 ,成功返回 true, 失败返回 false
    private boolean compareAndIncrementWorkerCount(int expect) {
        return ctl.compareAndSet(expect, expect + 1);
    }
    // 使用 CAS 方式 让 ctl 值 -1 ,成功返回 true, 失败返回 false
    private boolean compareAndDecrementWorkerCount(int expect) {
        return ctl.compareAndSet(expect, expect - 1);
    }
    // 将 ctl 值减一,do while 循环会一直重试,直到成功为止
    private void decrementWorkerCount() {
        do {} while (!compareAndDecrementWorkerCount(ctl.get()));
    }

成员属性

成员变量

  • 线程池中存放 Worker 的容器:线程池没有初始化,直接往池中加线程即可

    java
    private final HashSet<Worker> workers = new HashSet<Worker>();
  • 线程全局锁:

    java
    // 增加减少 worker 或者时修改线程池运行状态需要持有 mainLock
    private final ReentrantLock mainLock = new ReentrantLock();
  • 可重入锁的条件变量:

    java
    // 当外部线程调用 awaitTermination() 方法时,会等待当前线程池状态为 Termination 为止
    private final Condition termination = mainLock.newCondition()
  • 线程池相关参数:

    java
    // 核心线程数量
    private volatile int corePoolSize;
    // 线程池最大线程数量
    private volatile int maximumPoolSize;
    // 空闲线程存活时间
    private volatile long keepAliveTime;
    // 创建线程时使用的线程工厂,默认是 DefaultThreadFactory
    private volatile ThreadFactory threadFactory;
    // 【超过核心线程提交任务就放入 阻塞队列】
    private final BlockingQueue<Runnable> workQueue;
    // 拒绝策略,juc包提供了4中方式
    private volatile RejectedExecutionHandler handler;
    // 默认策略
    private static final RejectedExecutionHandler defaultHandler = new AbortPolicy();
  • 记录线程池相关属性的数值:

    java
    // 记录线程池生命周期内线程数最大值
    private int largestPoolSize;
    // 记录线程池所完成任务总数,当某个 worker 退出时将完成的任务累加到该属性
    private long completedTaskCount;
  • 控制核心线程数量内的线程是否可以被回收

    java
    // false(默认)代表不可以,为 true 时核心线程空闲超过 keepAliveTime 也会被回收
    // allowCoreThreadTimeOut(boolean value) 方法可以设置该值
    private volatile boolean allowCoreThreadTimeOut;

内部类

  • Worker 类:每个 Worker 对象会绑定一个初始任务,启动 Worker 时优先执行,这也是造成线程池不公平的原因。Worker 继承自 AQS,本身具有锁的特性,采用独占锁模式,state = 0 表示未被占用,> 0 表示被占用,< 0 表示初始状态不能被抢锁

    java
    private final class Worker extends AbstractQueuedSynchronizer implements Runnable {
        // worker 内部封装的工作线程
    	final Thread thread;
        // worker 第一个执行的任务,普通的 Runnable 实现类或者是 FutureTask
        Runnable firstTask;
        // 记录当前 worker 所完成任务数量
        volatile long completedTasks;
        
        // 构造方法
        Worker(Runnable firstTask) {
            // 设置AQS独占模式为初始化中状态,这个状态不能被抢占锁
           	setState(-1);
            // firstTask不为空时,当worker启动后,内部线程会优先执行firstTask,执行完后会到queue中去获取下个任务
            this.firstTask = firstTask;
            // 使用线程工厂创建一个线程,并且【将当前worker指定为Runnable】,所以thread启动时会调用 worker.run()
            this.thread = getThreadFactory().newThread(this);
        }
        // 【不可重入锁】
        protected boolean tryAcquire(int unused) {
            if (compareAndSetState(0, 1)) {
                setExclusiveOwnerThread(Thread.currentThread());
                return true;
            }
            return false;
        }
    }

    java
    public Thread newThread(Runnable r) {
        // 将当前 worker 指定为 thread 的执行方法,线程调用 start 会调用 r.run()
        Thread t = new Thread(group, r, namePrefix + threadNumber.getAndIncrement(), 0);
        if (t.isDaemon())
            t.setDaemon(false);
        if (t.getPriority() != Thread.NORM_PRIORITY)
            t.setPriority(Thread.NORM_PRIORITY);
        return t;
    }

成员方法

提交方法

  • AbstractExecutorService#submit():提交任务,把 Runnable 或 Callable 任务封装成 FutureTask 执行,可以通过方法返回的任务对象,调用 get 阻塞获取任务执行的结果或者异常,源码分析在笔记的 Future 部分

    java
    public Future<?> submit(Runnable task) {
        // 空指针异常
        if (task == null) throw new NullPointerException();
        // 把 Runnable 封装成未来任务对象,执行结果就是 null,也可以通过参数指定 FutureTask#get 返回数据
        RunnableFuture<Void> ftask = newTaskFor(task, null);
        // 执行方法
        execute(ftask);
        return ftask;
    }
    public <T> Future<T> submit(Callable<T> task) {
        if (task == null) throw new NullPointerException();
        // 把 Callable 封装成未来任务对象
        RunnableFuture<T> ftask = newTaskFor(task);
        // 执行方法
        execute(ftask);	
        // 返回未来任务对象,用来获取返回值
        return ftask;
    }

    java
    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
        // Runnable 封装成 FutureTask,【指定返回值】
        return new FutureTask<T>(runnable, value);
    }
    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
        // Callable 直接封装成 FutureTask
        return new FutureTask<T>(callable);
    }
  • execute():执行任务,但是没有返回值,没办法获取任务执行结果,出现异常会直接抛出任务执行时的异常。根据线程池中的线程数,选择添加任务时的处理方式

    java
    // command 可以是普通的 Runnable 实现类,也可以是 FutureTask,不能是 Callable
    public void execute(Runnable command) {
        // 非空判断
        if (command == null)
            throw new NullPointerException();
      	// 获取 ctl 最新值赋值给 c,ctl 高 3 位表示线程池状态,低位表示当前线程池线程数量。
        int c = ctl.get();
        // 【1】当前线程数量小于核心线程数,此次提交任务直接创建一个新的 worker,线程池中多了一个新的线程
        if (workerCountOf(c) < corePoolSize) {
            // addWorker 为创建线程的过程,会创建 worker 对象并且将 command 作为 firstTask,优先执行
            if (addWorker(command, true))
                return;
            
            // 执行到这条语句,说明 addWorker 一定是失败的,存在并发现象或者线程池状态被改变,重新获取状态
            // SHUTDOWN 状态下也有可能创建成功,前提 firstTask == null 而且当前 queue 不为空(特殊情况)
            c = ctl.get();
        }
        // 【2】执行到这说明当前线程数量已经达到核心线程数量 或者 addWorker 失败
        // 	判断当前线程池是否处于running状态,成立就尝试将 task 放入到 workQueue 中
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            // 条件一成立说明线程池状态被外部线程给修改了,可能是执行了 shutdown() 方法,该状态不能接收新提交的任务
            // 所以要把刚提交的任务删除,删除成功说明提交之后线程池中的线程还未消费(处理)该任务
            if (!isRunning(recheck) && remove(command))
                // 任务出队成功,走拒绝策略
                reject(command);
            // 执行到这说明线程池是 running 状态,获取线程池中的线程数量,判断是否是 0
            // 【担保机制】,保证线程池在 running 状态下,最起码得有一个线程在工作
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        // 【3】offer失败说明queue满了
        // 如果线程数量尚未达到 maximumPoolSize,会创建非核心 worker 线程直接执行 command,【这也是不公平的原因】
        // 如果当前线程数量达到 maximumPoolSiz,这里 addWorker 也会失败,走拒绝策略
        else if (!addWorker(command, false))
            reject(command);
    }

添加线程

  • prestartAllCoreThreads():提前预热,创建所有的核心线程

    java
    public int prestartAllCoreThreads() {
        int n = 0;
        while (addWorker(null, true))
            ++n;
        return n;
    }
  • addWorker():添加线程到线程池,返回 true 表示创建 Worker 成功,且线程启动。首先判断线程池是否允许添加线程,允许就让线程数量 + 1,然后去创建 Worker 加入线程池

    注意:SHUTDOWN 状态也能添加线程,但是要求新加的 Woker 没有 firstTask,而且当前 queue 不为空,所以创建一个线程来帮助线程池执行队列中的任务

    java
    // core == true 表示采用核心线程数量限制,false 表示采用 maximumPoolSize
    private boolean addWorker(Runnable firstTask, boolean core) {
        // 自旋【判断当前线程池状态是否允许创建线程】,允许就设置线程数量 + 1
        retry:
        for (;;) {
            // 获取 ctl 的值
            int c = ctl.get();
            // 获取当前线程池运行状态
            int rs = runStateOf(c);	
            
            // 判断当前线程池状态【是否允许添加线程】
            
            // 当前线程池是 SHUTDOWN 状态,但是队列里面还有任务尚未处理完,需要处理完 queue 中的任务
            // 【不允许再提交新的 task,所以 firstTask 为空,但是可以继续添加 worker】
            if (rs >= SHUTDOWN && !(rs == SHUTDOWN && firstTask == null && !workQueue.isEmpty()))
                return false;
            for (;;) {
                // 获取线程池中线程数量
                int wc = workerCountOf(c);
                // 条件一一般不成立,CAPACITY是5亿多,根据 core 判断使用哪个大小限制线程数量,超过了返回 false
                if (wc >= CAPACITY || wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                // 记录线程数量已经加 1,类比于申请到了一块令牌,条件失败说明其他线程修改了数量
                if (compareAndIncrementWorkerCount(c))
                    // 申请成功,跳出了 retry 这个 for 自旋
                    break retry;
                // CAS 失败,没有成功的申请到令牌
                c = ctl.get();
                // 判断当前线程池状态是否发生过变化,被其他线程修改了,可能其他线程调用了 shutdown() 方法
                if (runStateOf(c) != rs)
                    // 返回外层循环检查是否能创建线程,在 if 语句中返回 false
                    continue retry;
               
            }
        }
        
        //【令牌申请成功,开始创建线程】
        
    	// 运行标记,表示创建的 worker 是否已经启动,false未启动  true启动
        boolean workerStarted = false;
        // 添加标记,表示创建的 worker 是否添加到池子中了,默认false未添加,true是添加。
        boolean workerAdded = false;
        Worker w = null;
        try {
            // 【创建 Worker,底层通过线程工厂 newThread 方法创建执行线程,指定了首先执行的任务】
            w = new Worker(firstTask);
            // 将新创建的 worker 节点中的线程赋值给 t
            final Thread t = w.thread;
            // 这里的判断为了防止 程序员自定义的 ThreadFactory 实现类有 bug,创造不出线程
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                // 加互斥锁,要添加 worker 了
                mainLock.lock();
                try {
                    // 获取最新线程池运行状态保存到 rs
                    int rs = runStateOf(ctl.get());
    				// 判断线程池是否为RUNNING状态,不是再【判断当前是否为SHUTDOWN状态且firstTask为空,特殊情况】
                    if (rs < SHUTDOWN || (rs == SHUTDOWN && firstTask == null)) {
                        // 当线程start后,线程isAlive会返回true,这里还没开始启动线程,如果被启动了就需要报错
                        if (t.isAlive())
                            throw new IllegalThreadStateException();
                        
                        //【将新建的 Worker 添加到线程池中】
                        workers.add(w);
                        int s = workers.size();
    					// 当前池中的线程数量是一个新高,更新 largestPoolSize
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        // 添加标记置为 true
                        workerAdded = true;
                    }
                } finally {
                    // 解锁啊
                    mainLock.unlock();
                }
                // 添加成功就【启动线程执行任务】
                if (workerAdded) {
                    // Thread 类中持有 Runnable 任务对象,调用的是 Runnable 的 run ,也就是 FutureTask
                    t.start();
                    // 运行标记置为 true
                    workerStarted = true;
                }
            }
        } finally {
            // 如果启动线程失败,做清理工作
            if (! workerStarted)
                addWorkerFailed(w);
        }
        // 返回新创建的线程是否启动
        return workerStarted;
    }
  • addWorkerFailed():清理任务

    java
    private void addWorkerFailed(Worker w) {
        final ReentrantLock mainLock = this.mainLock;
        // 持有线程池全局锁,因为操作的是线程池相关的东西
        mainLock.lock();
        try {
            //条件成立需要将 worker 在 workers 中清理出去。
            if (w != null)
                workers.remove(w);
            // 将线程池计数 -1,相当于归还令牌。
            decrementWorkerCount();
            // 尝试停止线程池
            tryTerminate();
        } finally {
            //释放线程池全局锁。
            mainLock.unlock();
        }
    }

运行方法

  • Worker#run:Worker 实现了 Runnable 接口,当线程启动时,会调用 Worker 的 run() 方法

    java
    public void run() {
        // ThreadPoolExecutor#runWorker()
        runWorker(this);
    }
  • runWorker():线程启动就要执行任务,会一直 while 循环获取任务并执行

    java
    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();	
        // 获取 worker 的 firstTask
        Runnable task = w.firstTask;
        // 引用置空,【防止复用该线程时重复执行该任务】
        w.firstTask = null;
        // 初始化 worker 时设置 state = -1,表示不允许抢占锁
        // 这里需要设置 state = 0 和 exclusiveOwnerThread = null,开始独占模式抢锁
        w.unlock();
        // true 表示发生异常退出,false 表示正常退出。
        boolean completedAbruptly = true;
        try {
            // firstTask 不是 null 就直接运行,否则去 queue 中获取任务
            // 【getTask 如果是阻塞获取任务,会一直阻塞在take方法,直到获取任务,不会走返回null的逻辑】
            while (task != null || (task = getTask()) != null) {
                // worker 加锁,shutdown 时会判断当前 worker 状态,【根据独占锁状态判断是否空闲】
                w.lock();
                
    			// 说明线程池状态大于 STOP,目前处于 STOP/TIDYING/TERMINATION,此时给线程一个中断信号
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     // 说明线程处于 RUNNING 或者 SHUTDOWN 状态,清除打断标记
                     (Thread.interrupted() && runStateAtLeast(ctl.get(), STOP))) && !wt.isInterrupted())
                    // 中断线程,设置线程的中断标志位为 true
                    wt.interrupt();
                try {
                    // 钩子方法,【任务执行的前置处理】
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        // 【执行任务】
                        task.run();
                    } catch (Exception x) {
                     	//.....
                    } finally {
                        // 钩子方法,【任务执行的后置处理】
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;		// 将局部变量task置为null,代表任务执行完成
                    w.completedTasks++;	// 更新worker完成任务数量
                    w.unlock();			// 解锁
                }
            }
            // getTask()方法返回null时会走到这里,表示queue为空并且线程空闲超过保活时间,【当前线程执行退出逻辑】
            completedAbruptly = false;	
        } finally {
            // 正常退出 completedAbruptly = false
           	// 异常退出 completedAbruptly = true,【从 task.run() 内部抛出异常】时,跳到这一行
            processWorkerExit(w, completedAbruptly);
        }
    }
  • unlock():重置锁

    java
    public void unlock() { release(1); }
    // 外部不会直接调用这个方法 这个方法是 AQS 内调用的,外部调用 unlock 时触发此方法
    protected boolean tryRelease(int unused) {
        setExclusiveOwnerThread(null);		// 设置持有者为 null
        setState(0);						// 设置 state = 0
        return true;
    }
  • getTask():获取任务,线程空闲时间超过 keepAliveTime 就会被回收,判断的依据是当前线程阻塞获取任务超过保活时间,方法返回 null 就代表当前线程要被回收了,返回到 runWorker 执行线程退出逻辑。线程池具有担保机制,对于 RUNNING 状态下的超时回收,要保证线程池中最少有一个线程运行,或者任务阻塞队列已经是空

    java
    private Runnable getTask() {
        // 超时标记,表示当前线程获取任务是否超时,true 表示已超时
        boolean timedOut = false; 
        for (;;) {
            int c = ctl.get();
            // 获取线程池当前运行状态
            int rs = runStateOf(c);
    		
            // 【tryTerminate】打断线程后执行到这,此时线程池状态为STOP或者线程池状态为SHUTDOWN并且队列已经是空
            // 所以下面的 if 条件一定是成立的,可以直接返回 null,线程就应该退出了
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                // 使用 CAS 自旋的方式让 ctl 值 -1
                decrementWorkerCount();
                return null;
            }
            
    		// 获取线程池中的线程数量
            int wc = workerCountOf(c);
    
            // 线程没有明确的区分谁是核心或者非核心线程,是根据当前池中的线程数量判断
            
            // timed = false 表示当前这个线程 获取task时不支持超时机制的,当前线程会使用 queue.take() 阻塞获取
            // timed = true 表示当前这个线程 获取task时支持超时机制,使用 queue.poll(xxx,xxx) 超时获取
            // 条件一代表允许回收核心线程,那就无所谓了,全部线程都执行超时回收
            // 条件二成立说明线程数量大于核心线程数,当前线程认为是非核心线程,有保活时间,去超时获取任务
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
            
    		// 如果线程数量是否超过最大线程数,直接回收
            // 如果当前线程【允许超时回收并且已经超时了】,就应该被回收了,由于【担保机制】还要做判断:
            // 	  wc > 1 说明线程池还用其他线程,当前线程可以直接回收
            //    workQueue.isEmpty() 前置条件是 wc = 1,【如果当前任务队列也是空了,最后一个线程就可以退出】
            if ((wc > maximumPoolSize || (timed && timedOut)) && (wc > 1 || workQueue.isEmpty())) {
                // 使用 CAS 机制将 ctl 值 -1 ,减 1 成功的线程,返回 null,代表可以退出
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }
    
            try {
                // 根据当前线程是否需要超时回收,【选择从队列获取任务的方法】是超时获取或者阻塞获取
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : workQueue.take();
                // 获取到任务返回任务,【阻塞获取会阻塞到获取任务为止】,不会返回 null
                if (r != null)
                    return r;
                // 获取任务为 null 说明超时了,将超时标记设置为 true,下次自旋时返 null
                timedOut = true;
            } catch (InterruptedException retry) {
                // 阻塞线程被打断后超时标记置为 false,【说明被打断不算超时】,要继续获取,直到超时或者获取到任务
                // 如果线程池 SHUTDOWN 状态下的打断,会在循环获取任务前判断,返回 null
                timedOut = false;
            }
        }
    }
  • processWorkerExit():线程退出线程池,也有担保机制,保证队列中的任务被执行

    java
    // 正常退出 completedAbruptly = false,异常退出为 true
    private void processWorkerExit(Worker w, boolean completedAbruptly) {
        // 条件成立代表当前 worker 是发生异常退出的,task 任务执行过程中向上抛出异常了
        if (completedAbruptly) 
            // 从异常时到这里 ctl 一直没有 -1,需要在这里 -1
            decrementWorkerCount();
    
        final ReentrantLock mainLock = this.mainLock;
        // 加锁
        mainLock.lock();
        try {
            // 将当前 worker 完成的 task 数量,汇总到线程池的 completedTaskCount
            completedTaskCount += w.completedTasks;
            // 将 worker 从线程池中移除
            workers.remove(w);
        } finally {
            // 解锁
            mainLock.unlock();
        }
      // 尝试停止线程池,唤醒下一个线程
        tryTerminate();
    
        int c = ctl.get();
        // 线程池不是停止状态就应该有线程运行【担保机制】
        if (runStateLessThan(c, STOP)) {
            // 正常退出的逻辑,是对空闲线程回收,不是执行出错
            if (!completedAbruptly) {
                // 根据是否回收核心线程确定【线程池中的线程数量最小值】
                int min = allowCoreThreadTimeOut ? 0 : corePoolSize;
                // 最小值为 0,但是线程队列不为空,需要一个线程来完成任务担保机制
                if (min == 0 && !workQueue.isEmpty())
                    min = 1;
                // 线程池中的线程数量大于最小值可以直接返回
                if (workerCountOf(c) >= min)
                    return;
            }
            // 执行 task 时发生异常,有个线程因为异常终止了,需要添加
            // 或者线程池中的数量小于最小值,这里要创建一个新 worker 加进线程池
            addWorker(null, false);
        }
    }

停止方法

  • shutdown():停止线程池

    java
    public void shutdown() {
        final ReentrantLock mainLock = this.mainLock;
        // 获取线程池全局锁
        mainLock.lock();
        try {
            checkShutdownAccess();
            // 设置线程池状态为 SHUTDOWN,如果线程池状态大于 SHUTDOWN,就不会设置直接返回
            advanceRunState(SHUTDOWN);
            // 中断空闲线程
            interruptIdleWorkers();
            // 空方法,子类可以扩展
            onShutdown(); 
        } finally {
            // 释放线程池全局锁
            mainLock.unlock();
        }
        tryTerminate();
    }
  • interruptIdleWorkers():shutdown 方法会中断所有空闲线程,根据是否可以获取 AQS 独占锁判断是否处于工作状态。线程之所以空闲是因为阻塞队列没有任务,不会中断正在运行的线程,所以 shutdown 方法会让所有的任务执行完毕

    java
    // onlyOne == true 说明只中断一个线程 ,false 则中断所有线程
    private void interruptIdleWorkers(boolean onlyOne) {
        final ReentrantLock mainLock = this.mainLock;
        / /持有全局锁
        mainLock.lock();
        try {
            // 遍历所有 worker
            for (Worker w : workers) {
                // 获取当前 worker 的线程
                Thread t = w.thread;
                // 条件一成立:说明当前迭代的这个线程尚未中断
                // 条件二成立:说明【当前worker处于空闲状态】,阻塞在poll或者take,因为worker执行task时是要加锁的
                //           每个worker有一个独占锁,w.tryLock()尝试加锁,加锁成功返回 true
                if (!t.isInterrupted() && w.tryLock()) {
                    try {
                        // 中断线程,处于 queue 阻塞的线程会被唤醒,进入下一次自旋,返回 null,执行退出相逻辑
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    } finally {
                        // 释放worker的独占锁
                        w.unlock();
                    }
                }
                // false,代表中断所有的线程
                if (onlyOne)
                    break;
            }
    
        } finally {
            // 释放全局锁
            mainLock.unlock();
        }
    }
  • shutdownNow():直接关闭线程池,不会等待任务执行完成

    java
    public List<Runnable> shutdownNow() {
        // 返回值引用
        List<Runnable> tasks;
        final ReentrantLock mainLock = this.mainLock;
        // 获取线程池全局锁
        mainLock.lock();
        try {
            checkShutdownAccess();
            // 设置线程池状态为STOP
            advanceRunState(STOP);
            // 中断线程池中【所有线程】
            interruptWorkers();
            // 从阻塞队列中导出未处理的task
            tasks = drainQueue();
        } finally {
            mainLock.unlock();
        }
    
        tryTerminate();
        // 返回当前任务队列中 未处理的任务。
        return tasks;
    }
  • tryTerminate():设置为 TERMINATED 状态 if either (SHUTDOWN and pool and queue empty) or (STOP and pool empty)

    java
    final void tryTerminate() {
        for (;;) {
            // 获取 ctl 的值
            int c = ctl.get();
            // 线程池正常,或者有其他线程执行了状态转换的方法,当前线程直接返回
            if (isRunning(c) || runStateAtLeast(c, TIDYING) ||
                // 线程池是 SHUTDOWN 并且任务队列不是空,需要去处理队列中的任务
                (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
                return;
            
            // 执行到这里说明线程池状态为 STOP 或者线程池状态为 SHUTDOWN 并且队列已经是空
            // 判断线程池中线程的数量
            if (workerCountOf(c) != 0) {
                // 【中断一个空闲线程】,在 queue.take() | queue.poll() 阻塞空闲
                // 唤醒后的线程会在getTask()方法返回null,
                // 执行 processWorkerExit 退出逻辑时会再次调用 tryTerminate() 唤醒下一个空闲线程
                interruptIdleWorkers(ONLY_ONE);
                return;
            }
    		// 池中的线程数量为 0 来到这里
            final ReentrantLock mainLock = this.mainLock;
            // 加全局锁
            mainLock.lock();
            try {
                // 设置线程池状态为 TIDYING 状态,线程数量为 0
                if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
                    try {
                        // 结束线程池
                        terminated();
                    } finally {
                        // 设置线程池状态为TERMINATED状态。
                        ctl.set(ctlOf(TERMINATED, 0));
                        // 【唤醒所有调用 awaitTermination() 方法的线程】
                        termination.signalAll();
                    }
                    return;
                }
            } finally {
    			// 释放线程池全局锁
                mainLock.unlock();
            }
        }
    }

Future

线程使用

FutureTask 未来任务对象,继承 Runnable、Future 接口,用于包装 Callable 对象,实现任务的提交

java
public static void main(String[] args) throws ExecutionException, InterruptedException {
    FutureTask<String> task = new FutureTask<>(new Callable<String>() {
        @Override
        public String call() throws Exception {
            return "Hello World";
        }
    });
    new Thread(task).start();	//启动线程
    String msg = task.get();	//获取返回任务数据
    System.out.println(msg);
}

构造方法:

java
public FutureTask(Callable<V> callable){
	this.callable = callable;	// 属性注入
    this.state = NEW; 			// 任务状态设置为 new
}

java
public FutureTask(Runnable runnable, V result) {
    // 适配器模式
    this.callable = Executors.callable(runnable, result);
    this.state = NEW;       
}
public static <T> Callable<T> callable(Runnable task, T result) {
    if (task == null) throw new NullPointerException();
    // 使用装饰者模式将 runnable 转换成 callable 接口,外部线程通过 get 获取
    // 当前任务执行结果时,结果可能为 null 也可能为传进来的值,【传进来什么返回什么】
    return new RunnableAdapter<T>(task, result);
}
static final class RunnableAdapter<T> implements Callable<T> {
    final Runnable task;
    final T result;
    // 构造方法
    RunnableAdapter(Runnable task, T result) {
        this.task = task;
        this.result = result;
    }
    public T call() {
        // 实则调用 Runnable#run 方法
        task.run();
        // 返回值为构造 FutureTask 对象时传入的返回值或者是 null
        return result;
    }
}

成员属性

FutureTask 类的成员属性:

  • 任务状态:

    java
    // 表示当前task状态
    private volatile int state;
    // 当前任务尚未执行
    private static final int NEW          = 0;
    // 当前任务正在结束,尚未完全结束,一种临界状态
    private static final int COMPLETING   = 1;
    // 当前任务正常结束
    private static final int NORMAL       = 2;
    // 当前任务执行过程中发生了异常,内部封装的 callable.run() 向上抛出异常了
    private static final int EXCEPTIONAL  = 3;
    // 当前任务被取消
    private static final int CANCELLED    = 4;
    // 当前任务中断中
    private static final int INTERRUPTING = 5;
    // 当前任务已中断
    private static final int INTERRUPTED  = 6;
  • 任务对象:

    java
    private Callable<V> callable;	// Runnable 使用装饰者模式伪装成 Callable
  • 存储任务执行的结果,这是 run 方法返回值是 void 也可以获取到执行结果的原因:

    java
    // 正常情况下:任务正常执行结束,outcome 保存执行结果,callable 返回值
    // 非正常情况:callable 向上抛出异常,outcome 保存异常
    private Object outcome;
  • 执行当前任务的线程对象:

    java
    private volatile Thread runner;	// 当前任务被线程执行期间,保存当前执行任务的线程对象引用
  • 线程阻塞队列的头节点

    java
    // 会有很多线程去 get 当前任务的结果,这里使用了一种数据结构头插头取(类似栈)的一个队列来保存所有的 get 线程
    private volatile WaitNode waiters;
  • 内部类:

    java
    static final class WaitNode {
        // 单向链表
        volatile Thread thread;
        volatile WaitNode next;
        WaitNode() { thread = Thread.currentThread(); }
    }

成员方法

FutureTask 类的成员方法:

  • FutureTask#run:任务执行入口

    java
    public void run() {
        //条件一:成立说明当前 task 已经被执行过了或者被 cancel 了,非 NEW 状态的任务,线程就不需要处理了
        //条件二:线程是 NEW 状态,尝试设置当前任务对象的线程是当前线程,设置失败说明其他线程抢占了该任务,直接返回
        if (state != NEW ||
            !UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread()))
            return;
        try {
            // 执行到这里,当前 task 一定是 NEW 状态,而且【当前线程也抢占 task 成功】
            Callable<V> c = callable;
            // 判断任务是否为空,防止空指针异常;判断 state 状态,防止外部线程在此期间 cancel 掉当前任务
            // 【因为 task 的执行者已经设置为当前线程,所以这里是线程安全的】
            if (c != null && state == NEW) {
                V result;
                // true 表示 callable.run 代码块执行成功 未抛出异常
                // false 表示 callable.run 代码块执行失败 抛出异常
                boolean ran;
                try {
    				// 【调用自定义的方法,执行结果赋值给 result】
                    result = c.call();
                    // 没有出现异常
                    ran = true;
                } catch (Throwable ex) {
                    // 出现异常,返回值置空,ran 置为 false
                    result = null;
                    ran = false;
                    // 设置返回的异常
                    setException(ex);
                }
                // 代码块执行正常
                if (ran)
                    // 设置返回的结果
                    set(result);
            }
        } finally {
            // 任务执行完成,取消线程的引用,help GC
            runner = null;
            int s = state;
            // 判断任务是不是被中断
            if (s >= INTERRUPTING)
                // 执行中断处理方法
                handlePossibleCancellationInterrupt(s);
        }
    }

    FutureTask#set:设置正常返回值,首先将任务状态设置为 COMPLETING 状态代表完成中,逻辑执行完设置为 NORMAL 状态代表任务正常执行完成,最后唤醒 get() 阻塞线程

    java
    protected void set(V v) {
        // CAS 方式设置当前任务状态为完成中,设置失败说明其他线程取消了该任务
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            // 【将结果赋值给 outcome】
            outcome = v;
            // 将当前任务状态修改为 NORMAL 正常结束状态。
            UNSAFE.putOrderedInt(this, stateOffset, NORMAL);
            finishCompletion();
        }
    }

    FutureTask#setException:设置异常返回值

    java
    protected void setException(Throwable t) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            // 赋值给返回结果,用来向上层抛出来的异常
            outcome = t;
            // 将当前任务的状态 修改为 EXCEPTIONAL
            UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL);
            finishCompletion();
        }
    }

    FutureTask#finishCompletion:唤醒 get() 阻塞线程

    java
    private void finishCompletion() {
        // 遍历所有的等待的节点,q 指向头节点
        for (WaitNode q; (q = waiters) != null;) {
            // 使用cas设置 waiters 为 null,防止外部线程使用cancel取消当前任务,触发finishCompletion方法重复执行
            if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
                // 自旋
                for (;;) {
                    // 获取当前 WaitNode 节点封装的 thread
                    Thread t = q.thread;
                    // 当前线程不为 null,唤醒当前 get() 等待获取数据的线程
                    if (t != null) {
                        q.thread = null;
                        LockSupport.unpark(t);
                    }
                    // 获取当前节点的下一个节点
                    WaitNode next = q.next;
                    // 当前节点是最后一个节点了
                    if (next == null)
                        break;
                    // 断开链表
                    q.next = null; // help gc
                    q = next;
                }
                break;
            }
        }
        done();
        callable = null;	// help GC
    }

    FutureTask#handlePossibleCancellationInterrupt:任务中断处理

    java
    private void handlePossibleCancellationInterrupt(int s) {
        if (s == INTERRUPTING)
            // 中断状态中
            while (state == INTERRUPTING)
                // 等待中断完成
                Thread.yield();
    }
  • FutureTask#get:获取任务执行的返回值,执行 run 和 get 的不是同一个线程,一般有多个线程 get,只有一个线程 run

    java
    public V get() throws InterruptedException, ExecutionException {
        // 获取当前任务状态
        int s = state;
        // 条件成立说明任务还没执行完成
        if (s <= COMPLETING)
            // 返回 task 当前状态,可能当前线程在里面已经睡了一会
            s = awaitDone(false, 0L);
        return report(s);
    }

    FutureTask#awaitDone:get 线程封装成 WaitNode 对象进入阻塞队列阻塞等待

    java
    private int awaitDone(boolean timed, long nanos) throws InterruptedException {
        // 0 不带超时
        final long deadline = timed ? System.nanoTime() + nanos : 0L;
        // 引用当前线程,封装成 WaitNode 对象
        WaitNode q = null;
        // 表示当前线程 waitNode 对象,是否进入阻塞队列
        boolean queued = false;
        // 【三次自旋开始休眠】
        for (;;) {
            // 判断当前 get() 线程是否被打断,打断返回 true,清除打断标记
            if (Thread.interrupted()) {
                // 当前线程对应的等待 node 出队,
                removeWaiter(q);
                throw new InterruptedException();
            }
            // 获取任务状态
            int s = state;
            // 条件成立说明当前任务执行完成已经有结果了
            if (s > COMPLETING) {
                // 条件成立说明已经为当前线程创建了 WaitNode,置空 help GC
                if (q != null)
                    q.thread = null;
                // 返回当前的状态
                return s;
            }
            // 条件成立说明当前任务接近完成状态,这里让当前线程释放一下 cpu ,等待进行下一次抢占 cpu
            else if (s == COMPLETING) 
                Thread.yield();
            // 【第一次自旋】,当前线程还未创建 WaitNode 对象,此时为当前线程创建 WaitNode对象
            else if (q == null)
                q = new WaitNode();
            // 【第二次自旋】,当前线程已经创建 WaitNode 对象了,但是node对象还未入队
            else if (!queued)
                // waiters 指向队首,让当前 WaitNode 成为新的队首,【头插法】,失败说明其他线程修改了新的队首
                queued = UNSAFE.compareAndSwapObject(this, waitersOffset, q.next = waiters, q);
            // 【第三次自旋】,会到这里,或者 else 内
            else if (timed) {
                nanos = deadline - System.nanoTime();
                if (nanos <= 0L) {
                    removeWaiter(q);
                    return state;
                }
                // 阻塞指定的时间
                LockSupport.parkNanos(this, nanos);
            }
            // 条件成立:说明需要阻塞
            else
                // 【当前 get 操作的线程被 park 阻塞】,除非有其它线程将唤醒或者将当前线程中断
                LockSupport.park(this);
        }
    }

    FutureTask#report:封装运行结果,可以获取 run() 方法中设置的成员变量 outcome,这是 run 方法的返回值是 void 也可以获取到任务执行的结果的原因

    java
    private V report(int s) throws ExecutionException {
        // 获取执行结果,是在一个 futuretask 对象中的属性,可以直接获取
        Object x = outcome;
        // 当前任务状态正常结束
        if (s == NORMAL)
            return (V)x;	// 直接返回 callable 的逻辑结果
        // 当前任务被取消或者中断
        if (s >= CANCELLED)
            throw new CancellationException();		// 抛出异常
        // 执行到这里说明自定义的 callable 中的方法有异常,使用 outcome 上层抛出异常
        throw new ExecutionException((Throwable)x);
    }
  • FutureTask#cancel:任务取消,打断正在执行该任务的线程

    java
    public boolean cancel(boolean mayInterruptIfRunning) {
        // 条件一:表示当前任务处于运行中或者处于线程池任务队列中
        // 条件二:表示修改状态,成功可以去执行下面逻辑,否则返回 false 表示 cancel 失败
        if (!(state == NEW &&
              UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
                                       mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
            return false;
        try {
            // 如果任务已经被执行,是否允许打断
            if (mayInterruptIfRunning) {
                try {
                    // 获取执行当前 FutureTask 的线程
                    Thread t = runner;
                    if (t != null)
                        // 打断执行的线程
                        t.interrupt();
                } finally {
                    // 设置任务状态为【中断完成】
                    UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
                }
            }
        } finally {
            // 唤醒所有 get() 阻塞的线程
            finishCompletion();
        }
        return true;
    }